资源类型

期刊论文 41

年份

2023 5

2022 4

2021 3

2020 3

2019 4

2018 1

2017 4

2016 1

2015 1

2014 2

2013 3

2011 2

2008 2

2007 2

2003 1

2001 1

展开 ︾

关键词

低温铝电解 2

固体氧化物燃料电池 2

SiC绝缘侧壁 1

冲炮 1

双层辉光离子渗金属技术 1

反应模型 1

大型电解槽 1

惰性阳极 1

惰性阳极和惰性阴极 1

惰性阴极 1

扩散 1

支撑体 1

爆破飞石 1

电性能 1

空心阴极效应 1

管式 1

质子导体 1

软弱夹层 1

铝电解工业 1

展开 ︾

检索范围:

排序: 展示方式:

Block copolymers as efficient cathode interlayer materials for organic solar cells

Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 571-578 doi: 10.1007/s11705-020-2010-1

摘要: Emerging needs for the large-scale industrialization of organic solar cells require high performance cathode interlayers to facilitate the charge extraction from organic semiconductors. In addition to improving the efficiency, stability and processability issues are major challenges. Herein, we design block copolymers with well controlled chemical composition and molecular weight for cathode interlayer applications. The block copolymer coated cathodes display high optical transmittance and low work function. Conductivity studies reveal that the block copolymer thin film has abundant conductive channels and excellent longitudinal electron conductivity due to the interpenetrating networks formed by the polymer blocks. Applications of the cathode interlayers in organic solar cells provide higher power conversion efficiency and better stability compared to the most widely-applied ZnO counterparts. Furthermore, no post-treatment is needed which enables excellent processability of the block copolymer based cathode interlayer.

关键词: organic solar cell     block copolymer     cathode interlayer    

Anisotropy of multi-layered structure with sliding and bonded interlayer conditions

Lingyun YOU, Kezhen YAN, Jianhong MAN, Nengyuan LIU

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 632-645 doi: 10.1007/s11709-020-0617-4

摘要: A better understanding of the mechanical behavior of the multi-layered structure under external loading is the most important item for the structural design and the risk assessment. The objective of this study are to propose and develop an analytical solution for the mechanical behaviors of multi-layered structure generated by axisymmetric loading, and to investigate the impact of anisotropic layers and interlayer conditions on the multi-layered structure. To reach these objectives, first, according to the governing equations, the analytical solution for a single layer was formulated by adopting the spatial Hankel transform. Then the global matrix technique is applied to achieve the analytical solution of multi-layered structure in Hankel domain. The sliding and bonded interlayer conditions were considered in this process. Finally, the numerical inversion of integral transform was used to solve the components of displacement and stress in real domain. Gauss-Legendre quadrature is a key scheme in the numerical inversion process. Moreover, following by the verification of the proposed analytical solution, one typical three-layered flexible pavement was applied as the computing carrier of numerical analysis for the multi-layered structure. The results have shown that the anisotropic layers and the interlayer conditions significantly affect the mechanical behaviors of the proposed structure.

关键词: multi-layered structure     Hankel transformation     anisotropic     transversely isotropic     interlayer condition     Gauss-Legendre quadrature    

Mapping the trends and prospects of battery cathode materials based on patent landscape

《能源前沿(英文)》   页码 822-832 doi: 10.1007/s11708-023-0900-x

摘要: Advancing portable electronics and electric vehicles is heavily dependent on the cutting-edge lithium-ion (Li-ion) battery technology, which is closely linked to the properties of cathode materials. Identifying trends and prospects of cathode materials based on patent analysis is considered a kernel to optimize and refine battery related markets. In this paper, a patent analysis is performed on 6 popular cathode materials by comprehensively considering performance comparison, development trend, annual installed capacity, technology life cycle, and distribution among regions and patent assignees. In the technology life cycle, the cathode materials majorly used in electric vehicle have entered maturity stage, while the lithium cobalt oxide (LCO) cathode that is widely used in portable electronics is still in the growth stage. In global patent distributions, China holds more than 50% of total patents. In the top 10 patent assignees of 6 cathode materials, 2 institutes are from China with the rest being Japan (6) and Republic of Korea (2), indicating that the technology of cathode materials in China is relatively scattered while cathode research is highly concentrated in Japan and Republic of Korea. Moreover, the patent distribution has to consider practical issues as well as the impacts of core patents. For example, the high cost discourages the intention of applying international patents. This paper is expected to stimulate battery research, understand technical layout of various countries, and probably forecast innovative technology breakthroughs.

关键词: patent analysis     cathode     batteries     technology life cycle    

Fabrication of layered structure VS anchor in 3D graphene aerogels as a new cathode material for lithium

《能源前沿(英文)》 2019年 第13卷 第3期   页码 597-602 doi: doi:10.1007/s11708-018-0576-9

摘要: VS4 has gained more and more attention for its high theoretical capacity (449 mAh/g with 3e transfer) in lithium ion batteries (LIBs). Herein, a layered structure VS4 anchored in graphene aerogels is prepared and first reported as cathode material for LIBs. VS4@GAs composite exhibits an exceptional high initial reversible capacity (511 mAh/g), an excellent high-rate capability (191 mAh/g at the 5 C), and an excellent cyclic stability (239 mAh/g after 15 cycles).

关键词: VS4     graphene aerogels     cathode     lithium storage    

Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1550-7

摘要:

• A fine fibre (40–60 nm diameter) interlayer (~1 µm thickness) was electrospun.

关键词: Forward osmosis     Electro-spinning     Interfacial polymerisation     Fouling     Polyvinylidene fluoride    

Recent advances in cathode electrocatalysts for PEM fuel cells

Junliang ZHANG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 137-148 doi: 10.1007/s11708-011-0153-y

摘要: Great progress has been made in the past two decades in the development of the electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This review article is focused on recent advances made in the kinetic-activity improvement on platinum- (Pt-) based cathode electrocatalysts for the oxygen reduction reaction (ORR). The origin of the limited ORR activity of Pt catalysts is discussed, followed by a review on the development of Pt alloy catalysts, Pt monolayer catalysts, and shape- and facet-controlled Pt-alloy nanocrystal catalysts. Mechanistic understanding is reviewed as well on the factors contributing to the enhanced ORR activity of these catalysts. Finally, future directions for PEMFC catalyst research are proposed.

关键词: proton exchange membrane fuel cells (PEMFCs)     cathode electrocatalysts     platinum     oxygen reduction reaction (ORR)    

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

《能源前沿(英文)》 2017年 第11卷 第3期   页码 286-298 doi: 10.1007/s11708-017-0477-3

摘要: To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most promising due to their encouraging performance. The challenge thus has been their stability under acidic conditions, which has hindered their use for any practical applications. In this review, based on the author’s research experience in the field for more than 10 years, current challenges and possible solutions to overcome these problems were discussed. The current Edisonian approach (i.e., trial and error) to developing PGM-free catalysts has been ineffective in achieving revolutionary breakthroughs. Novel synthesis techniques based on a more methodological approach will enable atomic control and allow us to achieve optimal electronic and geometric structures for active sites uniformly dispersed within the 3D architectures. Structural and chemical controlled precursors such as metal-organic frameworks are highly desirable for making catalysts with an increased density of active sites and strengthening local bonding structures among N, C and metals. Advanced electrochemical and physical characterization, such as electron microscopy and X-ray absorption spectroscopy should be combined with first principle density functional theory (DFT) calculations to fully elucidate the active site structures.

关键词: oxygen reduction     fuel cells     cathode     nonprecious metal catalysts     carbon nanocomposites    

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 624-630 doi: 10.1007/s11783-013-0584-2

摘要: A biocathode with microbial catalyst in place of a noble metal was successfully developed for hydrogen evolution in a microbial electrolysis cell (MEC). The strategy for fast biocathode cultivation was demonstrated. An exoelectrogenic reaction was initially extended with an H -full atmosphere to enrich H -utilizing bacteria in a MEC bioanode. This bioanode was then inversely polarized with an applied voltage in a half-cell to enrich the hydrogen-evolving biocathode. The electrocatalytic hydrogen evolution reaction (HER) kinetics of the biocathode MEC could be enhanced by increasing the bicarbonate buffer concentration from 0.05 mol·L to 0.5 mol·L and/or by decreasing the cathode potential from -0.9 V to -1.3 V vs. a saturated calomel electrode (SCE). Within the tested potential region in this study, the HER rate of the biocathode MEC was primarily influenced by the microbial catalytic capability. In addition, increasing bicarbonate concentration enhances the electric migration rate of proton carriers. As a consequence, more mass H can be released to accelerate the biocathode-catalyzed HER rate. A hydrogen production rate of 8.44 m ·m ·d with a current density of 951.6 A·m was obtained using the biocathode MEC under a cathode potential of -1.3 V vs. SCE and 0.4 mol·L bicarbonate. This study provided information on the optimization of hydrogen production in biocathode MEC and expanded the practical applications thereof.

关键词: microbial electrolysis cell (MEC)     biocathode     hydrogen production     bicarbonate     cathode potential    

Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1399-1

摘要:

• With the same charge, current density had little effect on As(III) removal in ACEC.

关键词: Electrocoagulation     Air cathode     Arsenic     Current density     Energy consumption    

Assessing artificial neural network performance for predicting interlayer conditions and layer modulus

Lingyun YOU, Kezhen YAN, Nengyuan LIU

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 487-500 doi: 10.1007/s11709-020-0609-4

摘要: The objective of this study is to evaluate the performance of the artificial neural network (ANN) approach for predicting interlayer conditions and layer modulus of a multi-layered flexible pavement structure. To achieve this goal, two ANN based back-calculation models were proposed to predict the interlayer conditions and layer modulus of the pavement structure. The corresponding database built with ANSYS based finite element method computations for four types of a structure subjected to falling weight deflectometer load. In addition, two proposed ANN models were verified by comparing the results of ANN models with the results of PADAL and double multiple regression models. The measured pavement deflection basin data was used for the verifications. The comparing results concluded that there are no significant differences between the results estimated by ANN and double multiple regression models. PADAL modeling results were not accurate due to the inability to reflect the real pavement structure because pavement structure was not completely continuous. The prediction and verification results concluded that the proposed back-calculation model developed with ANN could be used to accurately predict layer modulus and interlayer conditions. In addition, the back-calculation model avoided the back-calculation errors by considering the interlayer condition, which was barely considered by former models reported in the published studies.

关键词: asphalt pavement     interlayer conditions     finite element method     artificial neural network     back-calculation    

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

《能源前沿(英文)》   页码 775-781 doi: 10.1007/s11708-023-0902-8

摘要: Aqueous zinc-ion batteries (ZIBs) have great prospects for widespread application in massive scale energy storage. By virtue of the multivalent state, open frame structure and high theoretical specific capacity, vanadium (V)-based compounds are a kind of the most developmental potential cathode materials for ZIBs. However, the slow kinetics caused by low conductivity and the capacity degradation caused by material dissolution still need to be addressed for large-scale applications. Therefore, sodium vanadate Na2V6O16·3H2O (NVO) was chosen as a model material, and was modified with alumina coating through simple mixing and stirring methods. After Al2O3 coating modification, the rate capability and long-cycle stability of Zn//NVO@Al2O3 battery have been significantly improved. The discharge specific capacity of NVO@Al2O3 reach up to 228 mAh/g (at 4 A/g), with a capacity reservation rate of approximately 68% after 1000 cycles, and the Coulombic efficiency (CE) is close to 100%. As a comparison, the capacity reservation rate of Zn//NVO battery is only 27.7%. Its superior electrochemical performance is mainly attributed to the Al2O3 coating layer, which can increase zinc-ion conductivity of the material surface, and to some extent inhibit the dissolution of NVO, making the structure stable and improving the cyclic stability of the material. This paper offers new prospects for the development of cathode coating materials for ZIBs.

关键词: cathodes     aqueous zinc-ion batteries     sodium vanadate     alumina     coating    

LiFePO/C cathode materials synthesized by co-precipitation and microwave heating

XU Yunlong, TAO Lili, MA Hongyan, HUANG Huaqing

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 422-427 doi: 10.1007/s11705-008-0082-4

摘要: LiFePO/C cathode materials were synthesized by a combination of co-precipitation and microwave heating using polyethylene glycol (PEG) as a carbon resource and the influence of microwave heating time on the structure and electrochemical performance of the materials was also discussed. The samples were characterized by X-ray diffraction (XRD), TEM, particle-size analysis and constant current charge-discharge experiment. The results show that the LiFePO/C heated for 9 min has a pure olive-type phase and excellent electrochemical performance. The initial discharge capacities of this sample are 154.3, 139.7, 123.9 mAh/g at the rates 0.1C, 0.2C, 1C at room temperature, respectively, and after 20 cycles remain 152.3, 134.3, 118.5 mAh/g, respectively.

关键词: polyethylene     electrochemical performance     combination     co-precipitation     diffraction    

CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors

《能源前沿(英文)》 2023年 第17卷 第4期   页码 555-566 doi: 10.1007/s11708-023-0882-8

摘要: Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors (ZHSCs). Herein, polyaniline (PANI) coated boron-carbon-nitrogen (BCN) nanoarray on carbon cloth surface is prepared as advanced cathode materials via simple high-temperature calcination and electrochemical deposition methods. Because of the excellent specific capacity and conductivity of PANI, the CC@BCN@PANI core-shell nanoarrays cathode shows an excellent ion storage capability. Moreover, the 3D nanoarray structure can provide enough space for the volume expansion and contraction of PANI in the charging/discharging cycles, which effectively avoids the collapse of the microstructure and greatly improves the electrochemical stability of PANI. Therefore, the CC@BCN@PANI-based ZHSCs exhibit superior electrochemical performances showing a specific capacity of 145.8 mAh/g, a high energy density of 116.78 Wh/kg, an excellent power density of 12 kW/kg, and a capacity retention rate of 86.2% after 8000 charge/discharge cycles at a current density of 2 A/g. In addition, the flexible ZHSCs (FZHSCs) also show a capacity retention rate of 87.7% at the current density of 2 A/g after 450 cycles.

关键词: CC@BCN@PANI cathode     Zn-ion hybrid supercapacitor     core-shell nanoarrays     high energy density     ultra-high cycle stability    

Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 123-133 doi: 10.1007/s11708-022-0849-1

摘要: High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells (PEMFCs), in which Pt-based catalysts employed in the cathodic catalyst layer (CCL) account for the major portion of the cost. Although non-precious metal catalysts (NPMCs) show appreciable activity and stability in the oxygen reduction reaction (ORR), the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL. Therefore, most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport. In this work, the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures, one containing low-Pt-based CCL and NPMC-based dummy catalyst layer (DCL) and the other containing only the NPMC-based CCL. Using Zn-N-C based DCLs of different thickness, the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis. Then, the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy, respectively. Results show that the ratios of local and bulk oxygen transport resistances in NPMC-based CCL are 80% and 20%, respectively, and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs. Furthermore, the activity of active sites per unit in NPMC-based CCLs was determined to be lower than that in the Pt-based CCL, thus explaining worse cell performance of NPMC-based membrane electrode assemblys (MEAs). It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.

关键词: proton exchange membrane fuel cells (PEMFCs)     non-precious metal catalyst (NPMC)     cathode catalyst layer (CCL)     local and bulk oxygen transport resistance    

爆破飞石受软弱夹层影响分析及其在复杂环境下的控制

陈斌,和铁柱,赵明生

《中国工程科学》 2014年 第16卷 第11期   页码 53-57

摘要:

分析了在软弱夹层地质条件下爆破飞石产生的原因及机理,根据软弱夹层产生爆破飞石的特点,区分了在软弱夹层和一般岩体条件下飞石产生的差别。在软弱夹层的地质条件下以及城镇复杂的爆破环境下,给出了合理有效控制爆破飞石的措施。

关键词: 爆破飞石     软弱夹层     冲炮    

标题 作者 时间 类型 操作

Block copolymers as efficient cathode interlayer materials for organic solar cells

Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao

期刊论文

Anisotropy of multi-layered structure with sliding and bonded interlayer conditions

Lingyun YOU, Kezhen YAN, Jianhong MAN, Nengyuan LIU

期刊论文

Mapping the trends and prospects of battery cathode materials based on patent landscape

期刊论文

Fabrication of layered structure VS anchor in 3D graphene aerogels as a new cathode material for lithium

期刊论文

Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling

期刊论文

Recent advances in cathode electrocatalysts for PEM fuel cells

Junliang ZHANG

期刊论文

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

期刊论文

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

期刊论文

Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation

期刊论文

Assessing artificial neural network performance for predicting interlayer conditions and layer modulus

Lingyun YOU, Kezhen YAN, Nengyuan LIU

期刊论文

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

期刊论文

LiFePO/C cathode materials synthesized by co-precipitation and microwave heating

XU Yunlong, TAO Lili, MA Hongyan, HUANG Huaqing

期刊论文

CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors

期刊论文

Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

期刊论文

爆破飞石受软弱夹层影响分析及其在复杂环境下的控制

陈斌,和铁柱,赵明生

期刊论文